ACCEPTED PAPERS

Immune System Modelling

A Petri Net Model of Granulomatous Inflammation . . . . . . . . . . . . . . . . . . .
Luca Albergante, Jon Timmis, Paul Andrews, Lynette Beattie and Paul M. Kaye

Defining a Simulation Strategy for Cancer Immunocompetence . . . . . . . . .
Grazziela Figueredo and Uwe Aickelin

Theoretical Artificial Immune Systems

Clonal Selection from First Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chris McEwan and Emma Hart

Density Preservation and Vector Quantization in Immune-Inspired Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alisson G. Azzolini, Ricardo P. V. Violato, and Fernando J. Von Zuben

Immune Inspired Information Filtering in a High Dimensional Space . . . .
Nikolaos Nanas, Stefanos Kodovas, Manolis Vavalis and Elias Houstis

On the Benefits of Aging and the Importance of Details . . . . . . . . . . . . . . . .
Thomas Jansen and Christine Zarges

Classifying in the Presence of Uncertainty: A DCA Perspective . . . . . . . . .
Robert Oates, Graham Kendal l and Jonathan Garibaldi

Insights into the Antigen Sampling Component of the Dendritic Cell Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chris Musselle

FDCM: A Fuzzy Dendritic Cell Method . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zeineb Chelly and Zied Elouedi

Modular RADAR: An Immune System Inspired Search and Response Strategy for Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soumya Banerjee and Melanie Moses

Applied Artificial Immune Systems

A Faster Clonal Selection Algorithm for Expensive Optimization Problems
Heder Bernardino, Helio Barbosa and Leonardo Fonseca

An Information Theoretic Approach for Clonal Selection Algorithms . . . . .
Vincenzo Cutello, Giuseppe Nicosia, Mario Pavone and Giovanni Stracquadanio

Antibodies with Adaptive Radius as Prototypes of High-Dimensional Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo P. V. Violato, Alisson G. Azzolini, and Fernando J. Von Zuben

GAIS: A Gaussian Artificial Immune System for Continuous Optimization
Pablo Castro and Fernando Jos´e Von Zuben

An Immune Algorithm for Minimum Interference Channel Assignment in Multi-radio Wireless Mesh Networks . . . . . . . . . . . . . . . . . . . . . . . . . . .
Su-Wei Tan

A Developmental and Immune-Inspired Dynamic Task Allocation Algorithm for Microprocessor Array Systems . . . . . . . . . . . . . . . . . . . . . . . . .
Yang Liu, Jon Timmis, Omer Qadir, Gianluca Tempesti and Andy Tyrrell

An Immunological Algorithm for Doping Profile Optimization in Semiconductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Giovanni Stracquadanio, Concetta Drago, Vittorio Romano and Giuseppe Nicosia

QML-AiNet: An Immune-inspired Network Approach to Qualitative Model Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wei Pang and George M. Coghill

Biomedical Article Classification using an Agent-Based Model of T-Cell Cross-Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alaa Abi Haidar and Luis Rocha

An Artificial Immune System Approach for Artificial Chemistries Based on Set Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Daniel Schreckling and Tobias Marktscheel

Further Experimentation with Hybrid Immune Inspired Network Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Robert Fanelli

Danger Theory and Intrusion Detection: Possibilities and Limitations of the Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mark Vella, Marc Roper and Sotirios Terzis

Electronic Fraud Detection for Video-on-Demand System using Hybrid Immunology-Inspired Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rentian Huang, Hissam Tawfik and Atulya Nagar

PerAda Workshop on Novel Applications of Bio-Inspired Computing to Pervasive Adaptive Systems

Converging Bio-Inspired Robotics and Socio-Inspired Agents for Multi-Dimensional Intelligent Transportation Systems . . . . . . . . . . . . . . . . .
Jeremy Pitt, Yiannis Demiris and John Polak

On Homeostasis in Collective Robotic Systems . . . . . . . . . . . . . . . . . . . . . . . .
Jon Timmis, and Andy Tyrrell

Can A Developmental AIS Provide Immunity to a Multi-cellular Robotics System?
Maizura Mokhtar and Yang Liu

Using virtual embryogenesis to structure controllers . . . . . . . . . . . . . . . . . . .
Ronald Thenius, Michael Bodi, Thomas Schmickl and Karl Crailsheim

Towards self-aware PerAda systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Emma Hart and Ben Paechter

Is Receptor Degeneracy Suitable for Automatic Response Decisions in Ad Hoc Networks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sven Schaust, Martin Drozda and Helena Szczerbicka

Biochemically-Inspired Emergent Computation . . . . . . . . . . . . . . . . . . . . . . .
Lidia Yamamoto, Thomas Meyer

Nature-inspired adaptivity in communication and learning . . . . . . . . . . . . .
Borbala Katalin Benko and Vilmos Simon

Symbiotic Cognitive Networks: A proposal . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tinku Rasheed, Emma Hart, Jim Bown and Ruth Falconer